90 research outputs found

    Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments

    Get PDF
    Most reports of a correlation between Pleistocene climate and geomagnetic field intensity rely strongly on the assumption that sediment natural remanent magnetic (NRM) intensity provides a record of geomagnetic field strength and is not sensitive to local changes in properties of the sediment. Critical assessment of relevant data presented here and elsewhere from deep-sea sediment cores shows that a pronounced dependence of NRM intensity on sediment composition can occur which implies that this assumption is unlikely to be generally valid. As sediment composition often reflects varying depositional conditions induced by climatic change, the significance of correlations proposed between Pleistocene palaeomagnetism and climatic indicators in deep-sea sediments may be less dramatic than sometimes supposed

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects

    Get PDF
    Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha‾¹ per year (95% CI 0.14—0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Recent Surveys in the Forests of Ulu Segama Malua, Sabah, Malaysia, Show That Orang-utans (P. p. morio) Can Be Maintained in Slightly Logged Forests

    Get PDF
    BACKGROUND: Today the majority of wild great ape populations are found outside of the network of protected areas in both Africa and Asia, therefore determining if these populations are able to survive in forests that are exploited for timber or other extractive uses and how this is managed, is paramount for their conservation. METHODOLOGY/PRINCIPAL FINDINGS: In 2007, the "Kinabatangan Orang-utan Conservation Project" (KOCP) conducted aerial and ground surveys of orang-utan (Pongo pygmaeus morio) nests in the commercial forest reserves of Ulu Segama Malua (USM) in eastern Sabah, Malaysian Borneo. Compared with previous estimates obtained in 2002, our recent data clearly shows that orang-utan populations can be maintained in forests that have been lightly and sustainably logged. However, forests that are heavily logged or subjected to fast, successive coupes that follow conventional extraction methods, exhibit a decline in orang-utan numbers which will eventually result in localized extinction (the rapid extraction of more than 100 m(3) ha(-1) of timber led to the crash of one of the surveyed sub-populations). Nest distribution in the forests of USM indicates that orang-utans leave areas undergoing active disturbance and take momentarily refuge in surrounding forests that are free of human activity, even if these forests are located above 500 m asl. Displaced individuals will then recolonize the old-logged areas after a period of time, depending on availability of food sources in the regenerating areas. CONCLUSION/SIGNIFICANCE: These results indicate that diligent planning prior to timber extraction and the implementation of reduced-impact logging practices can potentially be compatible with great ape conservation

    Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change

    Get PDF
    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birch-dominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/− 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleofires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as on land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere
    corecore